A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures

نویسندگان

  • Yining Wang
  • Liwei Wang
  • Yuanzhi Li
  • Wei Chen
  • Tie-Yan Liu
  • Wang Wang
  • Li He
  • Chen Liu
چکیده

A central problem in ranking is to design a measure for evaluation of ranking functions. In this paper we study, from a theoretical perspective, the Normalized Discounted Cumulative Gain (NDCG) which is a family of ranking measures widely used in practice. Although there are extensive empirical studies of NDCG, little is known about its theoretical properties. We first show that, whatever the ranking function is, the standard NDCG which adopts a logarithmic discount, converges to 1 as the number of items to rank goes to infinity. On the first sight, this result seems to imply that the standard NDCG cannot differentiate good and bad ranking functions on large datasets, contradicting to its empirical success in many applications. In order to have a deeper understanding of the general NDCG ranking measures, we propose a notion referred to as consistent distinguishability. This notion captures the intuition that a ranking measure should have such a property: For every pair of substantially different ranking functions, the ranking measure can decide which one is better in a consistent manner on almost all datasets. We show that the standard NDCG has consistent distinguishability although it converges to the same limit for all ranking functions. We next characterize the set of all feasible discount functions for NDCG according to the concept of consistent distinguishability. Specifically we show that whether an NDCG measure has consistent distinguishability depends on how fast the discount decays; and r−1 is a critical point. We then turn to the cut-off version of NDCG, i.e., NDCG@k. We analyze the distinguishability of NDCG@k for various choices of k and the discount functions. Experimental results on real Web search datasets agree well with the theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theoretical Analysis of NDCG Ranking Measures

A central problem in ranking is to design a measure for evaluation of ranking functions. In this paper we study, from a theoretical perspective, the Normalized Discounted Cumulative Gain (NDCG) which is a family of ranking measures widely used in practice. Although there are extensive empirical studies of the NDCG family, little is known about its theoretical properties. We first show that, wha...

متن کامل

A Theoretical Analysis of NDCG Type Ranking Measures

A central problem in ranking is to design a ranking measure for evaluation of ranking functions. In this paper we study, from a theoretical perspective, the widely used Normalized Discounted Cumulative Gain (NDCG)-type ranking measures. Although there are extensive empirical studies of NDCG, little is known about its theoretical properties. We first show that, whatever the ranking function is, ...

متن کامل

A New Hybrid Method for Web Pages Ranking in Search Engines

There are many algorithms for optimizing the search engine results, ranking takes place according to one or more parameters such as; Backward Links, Forward Links, Content, click through rate and etc. The quality and performance of these algorithms depend on the listed parameters. The ranking is one of the most important components of the search engine that represents the degree of the vitality...

متن کامل

Learning to Rank by Optimizing NDCG Measure

Learning to rank is a relatively new field of study, aiming to learn a ranking function from a set of training data with relevancy labels. The ranking algorithms are often evaluated using information retrieval measures, such as Normalized Discounted Cumulative Gain (NDCG) [1] and Mean Average Precision (MAP) [2]. Until recently, most learning to rank algorithms were not using a loss function re...

متن کامل

On NDCG Consistency of Listwise Ranking Methods

We study the consistency of listwise ranking methods with respect to the popular Normalized Discounted Cumulative Gain (NDCG) criterion. State of the art listwise approaches replace NDCG with a surrogate loss that is easier to optimize. We characterize NDCG consistency of surrogate losses to discover a surprising fact: several commonly used surrogates are NDCG inconsistent. We then show how to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013